Generalized Intersection Kernel

نویسنده

  • Ping Li
چکیده

Following the very recent line of work on the “generalized min-max” (GMM) kernel [7], this study proposes the “generalized intersection” (GInt) kernel and the related “normalized generalized min-max” (NGMM) kernel. In computer vision, the (histogram) intersection kernel has been popular, and the GInt kernel generalizes it to data which can have both negative and positive entries. Through an extensive empirical classification study on 40 datasets from the UCI repository, we are able to show that this (tuning-free) GInt kernel performs fairly well. The empirical results also demonstrate that the NGMM kernel typically outperforms the GInt kernel. Interestingly, the NGMM kernel has another interpretation — it is the “asymmetrically transformed” version of the GInt kernel, based on the idea of “asymmetric hashing” [14]. Just like the GMM kernel, the NGMM kernel can be efficiently linearized through (e.g.,) generalized consistent weighted sampling (GCWS), as empirically validated in our study. Owing to the discrete nature of hashed values, it also provides a scheme for approximate near neighbor search. The proposed GInt kernel and NGMM kernel provide additional options for practitioners to deal with data in their specific domains. We also note that there have been a series of (unpublished) works on related topics. For example, [7] proposed the GMM kernel and the “normalized random Fourier features (NRFF)” method; [8] compared the Nystrom method for approximating the GMM kernel with NRFF; [10] developed some basic mathematical theory (e.g., the convergence and asymptotic normality) for the GMM kernel; [6] compared the hashed (linearized) GMM kernel with a series of kernels which can be approximated by sign stable random projections.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of Hazardous Situations using Kernel Density Estimation Method Based on Time to Collision, Case study: Left-turn on Unsignalized Intersection

The first step in improving traffic safety is identifying hazardous situations. Based on traffic accidents’ data, identifying hazardous situations in roads and the network is possible. However, in small areas such as intersections, especially in maneuvers resolution, identifying hazardous situations is impossible using accident’s data. In this paper, time-to-collision (TTC) as a traffic conflic...

متن کامل

Generalized Weierstrass Kernels on the Intersection of Two Complex Hypersurfaces

On plane algebraic curves the so-called Weierstrass kernel plays the same role of the Cauchy kernel on the complex plane. A straightforward prescription to construct the Weierstrass kernel is known since one century. How can it be extended to the case of more general curves obtained from the intersection of hypersurfaces in a n dimensional complex space? This problem is solved in this work in t...

متن کامل

Reproducing Kernel Space Hilbert Method for Solving Generalized Burgers Equation

In this paper, we present a new method for solving Reproducing Kernel Space (RKS) theory, and iterative algorithm for solving Generalized Burgers Equation (GBE) is presented. The analytical solution is shown in a series in a RKS, and the approximate solution u(x,t) is constructed by truncating the series. The convergence of u(x,t) to the analytical solution is also proved.

متن کامل

Kernel Biased Discriminant Analysis Using Histogram Intersection Kernel for Content-Based Image Retrieval

It is known that no single descriptor is powerful enough to encompass all aspects of image content, i.e. each feature extraction method has its own view of the image content. A possible approach to cope with that fact is to get a whole view of the image(object). Then using machine learning approach from user’s Relevance feedback to obtain a reduced feature. In this paper, we concentrate on some...

متن کامل

Generalized RBF feature maps for Efficient Detection

These kernels combine the benefits of two other important classes of kernels: the homogeneous additive kernels (e.g. the χ2 kernel) and the RBF kernels (e.g. the exponential kernel). However, large scale problems require machine learning techniques of at most linear complexity and these are usually limited to linear kernels. Recently, Maji and Berg [2] and Vedaldi and Zisserman [4] proposed exp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1612.09283  شماره 

صفحات  -

تاریخ انتشار 2016